Supported projects in water management


Water management is understood as all topics dealing with the use of water for agriculture and urban areas


Partners: Amigo Srl (Italy)

The project aims at laying sound foundations to develop a realistic business model and a commercial product for bringing to the market innovative climate services in the field of water management including the nexus between agriculture, food and drinkable water. The new climate services will be based on the exploitation of the Copernicus Services including the seasonal forecasts. Final scope of the project is to identify a suitable market for climate services and identify the interested users at European and Worldwide level, based on providing appropriate information to the different utilities which are related to water use.

To this extent, Amigo plans to schedule at least one or more meetings with end-users in the sectors of water management for agriculture and drinkable water. A second target will be companies active in agriculture and agrifood production. The aim, to strengthen a second application with a prototyping project in the second cut-off, will therefore be to point out user needs for a water climate service, the identification user requirements for the climate platform, drafting new models of decision chains and sketching co-designed climate services to be developed.


ANASYWA - Advanced Nano filtration system for water treatment

Partners: SC ELECTRONIC APRIL Srl and Stea Tech Srl (Romania)

Water management in rural environments has become an important issue nowadays due to: new quality requests in agriculture, growing industrialization and lack of water treatment plants in rural areas. Beside the typical problems encountered in using surface and groundwater for human consumption, industrial and agricultural purposes (water hardness, contaminants and high treatment costs) another problem is due to the difficulty of accessing water sources located in rural areas. ANASYWA is proposing a new solution in order to obtain quality water with lower costs which can be fully monitored online. A technology already validate in relevant environment will be improved, will undergo the process of being demonstrated in relevant environment, then a prototype will be build. The prototype will use nanofiltration membranes, able to replace the classic combination of ion exchange resin based water softener and membrane filtration (ultrafiltration or reverse osmosis). The newest available types of nanofiltration membranes: Hollow Tube, Smart Comb, LF Nano and Ceramic will be tested in cross-flow and direct-flow configurations for reducing the water hardness and contaminant removal (natural organic matter and other suspended solids, pesticides, insecticides, precursors of chlorination by-products, nitrites and biological contaminants). Besides the removal of the water contaminants, the prototype will try to cover two other major aspects which occur usually in water treatment: power consumption and variable quality of water sources. In order to achieve these purpose, the prototype will use variable speed super-efficient pumps with IE5 motors, motorized valves for process self-adjustment, electronic sensors instead of classic measuring instruments (manometers, rotameters) and in house developed algorithms for system control which will reduce significantly the water treatment costs by reducing power consumption, maintenance operations and working hours. The co-applicant will develop software which will allow the monitoring and control functions such as self-adapting, self-adjusting, sensor reading and recalibration, status display and interrogation and also the long distance monitoring. The functionality and the efficacy of the prototype will be tested in relevant environment, various water sources with variable water quality. Then large scale demonstrators will take place to fully demonstrate ANASYWA’s functionality.


Increasing the efficiency of nutrients removal in small community wastewaters

Partners: ECOTRUST Srl (Romania) and ECO-SISTEMI Srl (Italy)

The aim of the project is to join the efforts of two European SMEs, EcoSistemi (Italy) and Ecotrust (Romania), for demonstrating in a real environment the efficiency of the integration of two waste water treatment technologies: a traditional primary treatment (three chamber Imhoff tank) and an innovative secondary biological treatment (RCBR biofilm reactor). This new application layout will increase water treatment quality standards, providing high efficiency in a compact design, high reduction of plant complexity, and high reduction of ecological footprint.



Partners: KEMATRONIC and OST Group Srl (Romania)

Wastewater treatment prototype without biological treatment, with cavitation and electrochemical oxidation in high-voltage field, generated by ultrasound and electrokinetical disintegration.

An innovative intelligent wastewater treatment technology is proposed to be tested, to study its effects on wastewater treatment, namely on COD degradation.

This project intends to combine the following in one SONOELCHEMCELL small-scale prototype: 1. An electrokinetic disintegration module and 2. A sonication disintegration module.

The 2 types of disintegration to be included in the innovative module have proven their efficacy in practice for sludge disintegration. The hypothesis at this point is that this combined module will have dramatic effects on wastewater treatment, ensuring COD degradation, in the same time being a feasible option in terms of efficiency, costs, environmental and social impact. SONOELCHEMCELL idea came from the surprising results found at Targu Secuiesc municipal wastewater treatment plant, plant designed and executed by our company, Kematronic, and mounted by co-applicant OST GRUP. This wwtp includes sonication and elektrokinetical disintegration for sludge treatment and has been in operation for 1 year and 6 months with outstanding unexpected results on treated wastewater. The actual raw wastewater has a large fraction of hard BOD (recalcitrant) in COD in raw wastewater; however this hard BOD was decomposed - the COD values in the treated wastewater are less than 30 mg /l. Therefore, based on this experience, we want to realize a small-scale prototype wastewater treatment plant, to study the effects of these types of disintegration on wastewater exclusively; so far, these technologies have only been studied on sludge. A comprehensive prototype research process is planned, to use this small-scale prototype to study the effects of both disintegration types, on COD degradation in wastewater, individually and together, in different and variable operation regimes, followed by a large-scale environment demonstration.